

ADVANTAGES AND APPLICATIONS GV30 PROFILE

The GV30 rail, with its flexible geometry and structure, offers the possibility to easily create curved structural elements such as: curved linear and curved counter-wall shapes, curved stepped, curved sheds, column cladding and curved manholes; adapting to any design requirement thanks to the 8 mm holes positioned at a pitch of 55 mm , making application simple, easy and intuitive.
-Profile suitable for application with M29
-Profile suitable for application with SP 49/27
N.B the depictions on the following pages are suitable for experienced and 'do it yourself' users

GV30 with M29

PERIMETER FIXING

GV30 with M29

FIXING TO THE FLOOR

GV30 with SP 49/27

PERIMETER FIXING

GV30 con SP 49/27

NORMATIVE REFERENCES

- Construction product according to Regulation (EU) 305/2011
- CE marking in accordance with EN 14195 and EN 13964
- Sheet metal quality and cladding grade in accordance with EN 10143 and EN 10346

CE MARKING

The products listed in this catalogue are intended for use inside buildings. Each product is provided with a Declaration of Performance (DoP). Reaction to fire: class A1/Durability: class B (building components exposed to variable relative humidity up to 90% and variable temperatures up to $30^{\circ} \mathrm{C}$ but without corrosive contaminants, except class $\mathrm{C} 5-\mathrm{M}$ products).

PRODUCT STORAGE

Store parcels in covered places with a relatively dry atmosphere and at a temperature as constant as possible in order to avoid condensation phenomena that may reduce the passivation state protecting the galvanised surface. If the material is stored outdoors (not recommended), use a cover that provides perfect protection against the weather (rain, fog, snow), taking care to place the packages at a slight angle. This cover must in any case be such as to allow adequate ventilation (not putting the two surfaces in direct contact), so that moisture does not accumulate and create condensation.

PACKAGING MATERIAL

The packaging is made with plastic strapping. The pallet is made of plastic strapping, wooden stand and laths. The packaging is suitably dimensioned to facilitate handling in warehouses and on construction sites. In the packaging the GV profiles are packed inside a rail profile.

1. Draw the lines to the floor and ceiling of the curved wall;

2. Shape the GV30 rail and fix it to the floor and ceiling;

3. Insert the M29 studs with a suitable pitch for the curvature radius and fix on the GV30 rail;

4. In the final step, close the sides of the wall by means of plasterboard panels of 6 to 15 mm .
N.B The pitch of the studs is adjusted according to the radius of curvature of the flexible rail. The tighter the rail radius, the tighter the studs fixing will be.

Sect. A

Sect. B

1. Fix the rails to the floor and to the ceiling by means of M29 studs;

2. Leave space free for inserting the desired shape, position the plasterboard model made earlier and shape the GV30 rail onto it;

3. Insert the M29 studs with a suitable pitch for the curvature radius and fix on the GV30 rail;

4. In the final stage, fasten the plasterboard panels 6 to 15 mm on the metal structure.

Sect. A

1. Draw the lines on the ceiling and on the pillar to be clad with the curve stair-step;

2. Shape and fix the GV30 on the ceiling and pillar, then fix the SP studs positioned between the rails;

3. Complete the stair-step by positioning the remaining studs along the entire metal structure;

4. Draw the curve to be made on the ceiling and the perimeter area of the walls;

5. Shape and fix the GV30 to the ceiling. Then fix the perimeter rails and position the SP studs between the rails;
6. In the final stage, the 6 to 15 mm plasterboard panels are fixed to the metal structure.
N.B The pitch of the studs is adjusted according to the curvature radius of the flexible rail. The tighter the rail radius, the tighter the fixing of the studs will be.

Sect. A

4. In the final stage, fix the 6 to 15 mm plasterboard panels to the metal structure.
$\mathbf{N} . \mathbf{B}$ The pitch of the studs is adjusted according to the radius of curvature of the flexible rail. The tighter the rail radius, the tighter the fixing of the studs will be.

Sect. A

1. Draw the circular line of the cladding on the floor and on the ceiling;

2. Shape and fix the GV30 rail on the floor and on the pillar, and then fix the M29 studs by positioning them between the rails;

3. Complete the cladding by positioning the remaining studs along the metal structure;

4. Draw the lines of the curved pit on the ceiling;

5. Shape and fix the GV30 rail, then proceed with fixing the SP studs by positioning them between the rails;
6. In the final stage, the 6 to 15 mm plasterboard panels are fixed to the metal structure.
N.B The pitch of the studs is adjusted according to the radius of curvature of the flexible rail. The tighter the rail radius, the tighter the fixing of the studs.

Sect. A

3. Complete the pit by positioning the remaining studs along the metal structure;

In order to realise curved structures, curved lines or arcs must necessarily be drawn; the circumference arc is certainly the most commonly used. A circumference arc is called a 'round arc' if it represents a semi-circumference; it is called a 'declined arc' if it is drawn only in part, i.e. if the distance between the ends of the arc (called the 'chord') is less than the diameter; while an 'arrow' is defined as the maximum distance of the chord from the semi-circumference.

Tracing the arc of a circumference by three points:

- The points are joined to obtain the segments $A B$ and $B C$;
- The midpoints, called segments, are determined;
- The perpendicular bisectors through the midpoints are extended until they intersect at point 0;
- The arc of a circle with centre 0 and radius requal to the segment OC is drawn.

This case often occurs on construction sites when a barrel vault is to be built in a corridor, for example; the starting point of the vault is called the impost height, while the highest point is called the vault height.

Drawing the ellipse using the "gardener's method

In order to draw the ellipse, two particular points, called " focuses ", are needed, which are positioned on the major axis and are at the same distance from the centre of the ellipse, point of intersection of the major and minor axes.

We take a string of length equal to half the major axis and point it at C , tracing an arc of circumference that intersects $A B$ at points F1 and F2;
A string of a length equal to the major axis $A B$ is taken; the ends are tied to two nails fixed at F1 and F2;
With a pencil, the string is stretched and the ellipse is drawn.

$A B=$ major axis

$C D=$ minor axis
F1 e F2= focuses
CF1=A0

Round arc

Lowered arc

MIN. RADIUS CURVATURE

Diameter A: 24 cm
Radius B: 12 cm

MIN. RADIUS DORSAL CURVATURE

Diameter A: 30 cm

Radius B: 15 cm

TYPES OF ARCS WITH NOMENCLATURES AND CENTRES

VALUE

Type	EN 14195	Metal structure	-
Reaction to fire	EN 14195-1A	1	
Thickness	EN 10143	$0,6-0,8$	mm
Thickness tolerance	EN 10143	$\pm 0,07$	mm
Length	EN 14195	3000	mm
Length tolerance	EN 14195	± 4	mm
Protective cladding	EN 10346	$5 \div 12$	$\mu \mathrm{~m}$
Yield stress	EN 10143	340	$\mathrm{~N} / \mathrm{mm} 2$

PACKAGING AND PALLET SHEET

PACKAGING

ID - OP - $00 \times 00 \times 00$ CE - N.E - DATE - TIME ${ }^{*}$
information on the profiles enclosing the Vertebra rails
$\mathrm{Kg} / \mathrm{ml}$
0,408
Profile weight

-	Kg/pc		1,224	
Profile pieces	Pcs		6	
	m		18	3 m
Total per package	Kg		12,00	
Dimensions	mm	100	603000	3 m

PALLET

Packaging	Pcs	32		
Total profiles	Pcs	192		
Total per package	m	576	3 m	
	Kg		384	
Dimensions	mm	400	580	3000
d	3 e	f		

Weight calculated on thickness 6/10
N.B. - The weight of the package/pallet is subject to variation depending on the material tolerances described in the table.

- The total weight of the pallet also includes the value of the rails used to wrap the main profiles in the pack.
- All technical data and specifications in the data sheet are subject to change without notice.

Vertebra ${ }^{\circledR}$ PallBox

PACKAGING

Packaging	Pcs	13	
Total profiles	Pcs	26	
Total per package	m	468	
Kg		236	
Dimensions	mm	1200 d	780

Weight calculated on thickness $6 / 10$

- The pallbox is placed on a Euro pallet, secured with strapping and protected with stretch film.
- The VERTEBRA profiles contained in the pallboxes are made of galvanised steel DX51D with a thickness of 0.6 mm .

